Optimizing for Blue Gene/Q

Hal Finkel
hfinkel@anl.gov
2015-05-19

Argonne Leadership
Computing Facility

Argon ne°

NATIONAL LABORATORY

ne Leadership
mputing Facility

mailto:hfinkel@anl.gov

Optimizing for Blue Gene/Q

Wi
5“3‘.‘ "!ii"_'[:_;-J. i
o 4

v Relevant information on the BG/Q
v How you can optimize your code for the BG/Q
v Q&A

-~ Argonne Leadership N e
Computing Facility NN

Optimizing for Blue Gene/Q

-~ Argonne Leadership RN
Computing Facility N

Optimizing for Blue Gene/Q

-~ Argonne Leadership RN
Computing Facility NN

What programs do...

.., 1y gy |y
21 £y g

iapping library «/

ith extore(] in nainerr(.

; 3 "y
- [y Gy oy oo
1) ey iy Z"

AN

Read data from memory

AN

Compute using that data

AN

Write results back to memory

<

Communicate with other nodes and the outside world

- Argonne Leadm \
Computing Facility

How fast can you go...

The speed at which you can compute is bounded by:

(the clock rate of the cores) x (the amount of parallelism you can exploit)

-~ Argonne Leadership RN
Computing Facility NN

Types of parallelism

v Parallelism across nodes (using MPI, etc.)

v Parallelism across sockets within a node [Not applicable to the BG/Q]

v Parallelism across cores within each socket

v Parallelism across pipelines within each core (i.e. instruction-level parallelism)
v Parallelism across vector lanes within each pipeline (i.e. SIMD)

v Using instructions that perform multiple operations simultaneously (e.g. FMA)

-~ Argonne Leadership N e
Computing Facility NN

There is only one socket

g

I TR R Y]
¥
- e

ELLL ll-l;.

b
w
L
-
'
“

oWl
LT Y Y

snnn® Vs
1

NERD
.

O"'M“] 1) iy
coo: r ! "y pl“l|’

My by iy 225 s o\

5390 ‘ oy gzt
O AmE i B

Image source: https://computing.linl.gov/tutorials/linux_clusters/

Argonne Leadership
Computing Facili

There is only one socket

{ 1y g o Lo IRRN:
(:)‘ ¥ ;II”l"l|Z e

(] L]
Moy gy iy o 0 375e g0l HE A

F o0y ity 22228 Frecgem
Ej W, o R Nl T o

Image source: https://computing.linl.gov/tutorials/linux_clusters/ A BG /Q N Od e h as:
v 1 PowerPC A2Q CPU
v 16 GB DDR3 DRAM

-~ Argonne Leadership N e
Computing Facility NN

There are 16 cores per node

HH\ L
mannll

i [t
fis
_LU
T P
M oty Controller £ _ ¥ | [Al

0. s T
3 e L2 F (FRER 7 TR e

' 'm-krll..zwt FHEHA 00 St "'LH 1= LHh PR L2

HH) 03 \w_ R G (] LR S 12)

| '-E-E-}}:I “tﬁfﬁ FERL T)] :ﬁ] i il

ol HHHL T BEEEH [L2 | D et ad 13 S ORAE 3 =

,"-H-H 13 e [FEEE 01 | SR)18 e o

[HEd o2 S | el L S I 96

oo 1 | 68 4= (T

IS O =S () OO X

LT

: ::sﬁ! ‘H‘H 3'1"”' =

inun|
1L

Network pClel

Stired (3 Gache: =~

Msg i O o)
unit |-

- !. Hr_v'._v;-jlm and’QPI
FETMSEI0 an@¥apI

Image source: https //lcomputing.linl.gov/tutorials/linux_clusters/

- Argonne Leadership
Computing Facili

There are 16 cores per node

e

!

HEEH T B | FEEE

el Hit 04 HHHi 07 b
~ N YRR T O

Mefiory Coptroller

. : = ATHHE 0 SHHH] PR 2 (R il ey R

"~ ~ : : ' B R L2 Rk 00 vl % 22 AT L2

R (O] e (T - FEHHY 03 SHHH|FE | hel| ol L 12 JHH
~ | =Core" | «Core Core:| Core | Core R I T e FREER, T JFER et
e s (TN et LU P ST e 2 e b FRERE L2 A [P TRE

. il H":"H 14 i ."H A L2 I .

PR A AR f e 3

[rHBe | DpB

. B VOon i MO0 T T

LA 8
LELE P
H
Iy
it

|
|
1
1
1

il
inun| i
1L L

R PClel

EPU
u’ Uy 1“ nﬂsg 1 lp,"_.y 17 b

Sl MISEN/0 and QP

Serdes . .. | unit’]." Serdes

Image source: https://computing.linl.gov/tutorials/linux_clusters/

- Argonne Leadership
Computing Facili

There are two pipelines per core

¢ Instruction Decode Queue

192-entry Reorder Butfer

60-entry Unified Reservation Station

Port 1 Port 2 Port 3 Port 4 Port 5 Port &

Integer
ALU/Shift

Port 7

Store
Address

TalL2

Eranch, Fixed Point, Load/Store (XL

1

£ 1

ex2

exd

ex

x5 |- o] ex6 | |

FPRE

CR

.

Floating Foint (FU)

- Argonne Leadel’ship\\ e
Computing Facility NN

There are two pipelines per core
WO PIpet] P PowerPC A2 Core:

56-entry Instruction Decode Queue

192-entry Reorder Butfer

iud

60-entry Unified Reservation Station

ucade

Intstruction Unit (IL)

Port 2 Port 3 Port 4 Port §

FMA | |FMA Fiul
256b FP | 258b FP 5 _— _GPRE ERAT Dl Campietian

Mul Add 1 e 1 exa ex3 e exs » ExB
0%

rr1§

[

TalL2

Eranch, Fixed Point, Load/Store (XL

EXS * 2X6

1 Mex! »ex2 > ex3 > ex |

4
FPRS CR l

Floating Foint (FU)

- Argonne Leadel’ship\\ e
Computing Facility NN

There are four hardware threads per core

1 g et o2 e [o x5 | of e o

1 B[woa] oo | o) e | fan b |

You must have at least two threads (or processes)
per core to efficiently use the BG/Q!

-~ Argonne Leadership RN
Computing Facility NN

Vectorization: The Quad-Processing eXtension (QPX)

-~ Argonne Leadership RN
Computing Facility NN

Vectorization: The Quad-Processing eXtension (QPX)

v On the BG/Q, only QPX vector instructions are supported!
v Only <4 x double>, <4 x float> and <4 x bool> operations are provided.

v The only advantage of single precision over double precision is decreased memory bandwidth/footprint.

E—

256 /‘t

Load

64

\\\\\\\\

-~ Argonne Leadership N e
Computing Facility NN

...
Fused Multiply Add Instructions (FMA)

There are some FP (vector) instructions that combine both a multiply and an add/subtract into one instruction!

Many variants like these:

And a few like these with built-in permutations:

_ _ - - - ~
- ~ ~ ~

-~ Argonne Leadership RN
Computing Facility NN

Putting it all together...

Peak FLOPS: (1.66 GHz) x (16 cores) x (4 vector lanes) x (2 operations per FMA) = 212.48 GFLOPS/node.

-~ Argonne Leadership RN
Computing Facility NN

Memory

<4
e
o
2
D
=

Leadership

Computing Facility

p
- Argonne

The L1 cache and Prefetcher

Cross Bar Switch

/

v Each core has its own L1 cache and L1 Prefetcher (L1P)

v L1 Cache:
v Data: 16 KB, 8-way set associative, 64-byte cache lines, 6-cycle latency
v Instruction: 16 KB, 4-way set associative, 3-cycle latency

v L1 Pefetcher (L1P):
v 32 buffer entries, 128 bytes each, 24 cycle latency

v Buffer is write back
v Operates in list or stream mode (stream mode is the default)
v By default, tracks 10 streams x 3 128-byte cache lines deep

-~ Argonne Leadership N e
Computing Facility NN

]
The L2 cache and DRAM

v L2 Cache:
« Shared by all cores, divided into 16 slices o
v 32 MB total, 2 MB per slice - o

v 16-way set associative, 128-byte lines, write-back, 82-cycle latency

DRAM 0

v Prefetches from DRAM based on L1P requests

v Supports direct atomic operations
v Supports multiversioning (for transactional memory)
v Clocked at 800 MHz (half of the CPU rate)
v Read: 32 bytes/cycle, Write: 16 bytes/cycle

» DRAM:
v Two on-chip memory controllers, each connected to 8 L2 slices
v Each controller drives a 16-byte DDR-3 channel at 1.33 Gb/s
v The peak bandwidth is 42.67 GB/s (excluding ECC)

v The latency is > 350 cycles

-~ Argonne Leadership N e
Computing Facility NN

Crossbar

DRAM 1

Argonne Lead

Odds and Ends

The A2 core uses in-order dispatch, with one exception: There is an 8-entry load miss queue (LMQ) that
holds loads and prefetches that miss the L1 cache, shared by all threads. Upon an L1 cache miss, the
issuing thread does not actually stall until a use of the load is encountered.

Try not to request the same L1 cache line more than once (especially relevant when using software
prefetching); the second request will stall the thread until the first request is satisfied.

The L2 cache is write-through (so writing to a cache line knocks it out of cache), so avoid writing to memory
from which you soon expect to read. Unlike commodity hardware, which uses write-back caches, making
write locality important, write locality is essentially irrelevant on the BG/Q.

For a mispredicted branch, there is a minimum penalty of 13 cycles.

If you need to compute 1/x (and don't need the exact IEEE answer) or 1/sqrt(x), QPX provides reciprocal
estimate and reciprocal sqrt estimate functions. Combined with a Newton iteration or two, these give nearly-
exact answers and are much less expensive than alternative methods.

There is a timebase register on the A2 core which provides exact cycle counts. If you're trying to time

- something, use it!

m

Computing Facility

An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for (i=0;i<n; ++i){

a[i] = e[i*(b[i]*c[i] + dIi]) + f[il;

m(i] = q[il*(n[i]*o[i] + p[i]) + rfi];

Split the loop

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for (i=0;i<n;++i){

a[i] = e[i*(bli*c[i] + d[i]) + f]i;
}

#pragma omp parallel for
for (i=0;i<n;++i){

} m[i] = q[iI*(n[i]"o{i] + p[i]) + r[il;

-~ Argonne Leadership RN
Computing Facility NN

An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel for
for (i=0;i<n;++i){

a[i] = e[i*(bli*c[i] + d[i]) + f]i;
}

#pragma omp parallel for

for (i=0;i<n;++i){

m(i] = q[il*(n[i]*o[i] + pli]) + rfi; _ _ _

} void foo(double * restrict a, double * restrict b, etc.) {

} #pragma omp parallel
{

#pragma omp for

for (i=0;i<n;++i){

a[i] = e[i*(bli*c[i] + d[i]) + f]i;
}

(don't actually split the parallel region) #pragma omp for
for (i=0;i<n; ++i) {

} mli] = q[iI*(n[i]*ofi] + p[i]) + r[il;

}
}

-~ Argonne Leadership N e
Computing Facility NN

An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel

{
#pragma omp for
for (i=0;i<n;++i){
ali] = e[il*(b[i]*c[i] + d[i]) + f[i;
}

Unroll (interleaved) by a factor of 3.

}
This will require up to
3*5 == 15 QPX registers,
but we have 32 of them.

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel
{
#pragma omp for
#pragma unroll(3)
for (i=0;i<n;++i){
a[i] = e[i]*(b[i]*c(i] + d[i]) + f[i];
}

-~ Argonne Leadership RN
Computing Facility NN

An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel

{
#pragma omp for
#pragma unroll(3)
for (i=0;i<n; ++i){

a[i] = e[i]*(bli*c[i] + d[i]) + f]il;
}

-~ Argonne Leadership RN
Computing Facility NN

An example...

void foo(double * restrict a, double * restrict b, etc.) {
#pragma omp parallel

{
#pragma omp for
#pragma unroll(3)
for (i=0;i<n; ++i){

a[i] = e[i]*(bli*c[i] + d[i]) + f]il;
}

-~ Argonne Leadership RN
Computing Facility NN

...
Compiling
When compiling your programs, please use our MPI wrappers (these are the softenv keys)...

(generally best performance)

v +mpiwrapper-xl.legacy

v +mpiwrapper-xI

v +mpiwrapper-bgclang.legacy

v +mpiwrapper-bgclang
v +mpiwrapper-gcc.legacy

v +mpiwrapper-gcc

(generally worst performance)

-~ Argonne Leadership RN
Computing Facility NN

Compiling

Basic optimization flags...

v -O3 — Generally aggressive optimizations (try this first: it is typically the best tested of all compiler
optimization levels)

v -g — Always include debugging symbols (really, always! - when your run crashes at scale after
running for hours, you want the core file to be useful)

v -gsmp=omp (xI) -fopenmp (bgclang and gcc) — Enable OpenMP (the pragmas will be ignored
without this)

v -gnostrict (xI) -ffast-math (bgclang and gcc) — Enable “fast” math optimizations (most people don't
need strict IEEE floating-point semantics). x| enables this by default at -O3 and above and you
need to pass -gstrict to turn it off.

-~ Argonne Leadership N e
Computing Facility NN

ESSL

IBM provides ESSL.: A library of optimized math functions (BLAS for linear algebra, FFTs, and more). For
FFTs, there is an optional FFTW-compatible interface.

v ESSL is installed in /soft/libraries/essl/current
v You can choose either -lesslbg or -lesslsmpbg (the 'smp' version uses OpenMP internally to take

advantage of multiple threads)

-~ Argonne Leadership N e
Computing Facility NN

Memory partitioning

Using threads vs. multiple MPI ranks per node: it's about...

v Memory
v Sending data between ranks on the same node often involves “unnecessary” copying
v Similarly, your application may need to manage “unnecessary” ghost regions
« MPI (and underlying components) have data structures that grow linearly (at best) with the total
number of ranks
v And Memory
v When threads can work together they can share resources instead of competing (cache, memory
bandwidth, etc.).
v Each process only gets 16GB / (ranks per node) memory
v And parallelism

v You'll likely see the best overall results from the scheme that exposes the most parallelism

Argonne Leadm
Computing Facility

Our network is fast...

Each A/B/C/D/E link bandwidth: 4 GB/s

<

<

Bisection bandwidth (32 racks): 13.1 TB/s

<

HW latency
v Best: 80 ns (nearest neighbor)

v Worst: 3 us (96-rack 20 PF system, 31 hops)

<

MPI latency (zero-length, nearest-neighbor): 2.2 us

2 Argonne Leadm\ \ N
Computing Facility NN

And finally, be kind to the file system...

v Use MPI /O (there'll be a talk on this later), use collective I/O if the amounts being written are small
v Give each rank its own place within the file to store its data (avoid lock contention)
v Make sure you can validate your data (use CRCs, etc.), and then actually validate it when you read it

(We've open-sourced a library for computing CRCs: http://trac.alcf.anl.gov/projects/hpcrc64/)

And use load + broadcast instead of reading the same thing from every rank...

v Static linking is the default for all BG/Q compilers... loading shared libraries from tens of thousands of

ranks may not be fast
v The same is true for programs using embedded scripting languages... loading lots of small script files

from tens of thousands of ranks is even worse

-~ Argonne Leadership N e
Computing Facility NN

Some final advice...

Don't guess! Profile! (We'll have several talks about how to do that.) Your performance bottlenecks on the
BG/Q might be very different from those on other systems.

And don't be afraid to ask questions... ? Any questions?
|

- Argonne Leadm\ \ N
Computing Facility N

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 12
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

